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CRITICAL LOADING PARAMETERS FOR THE DEVELOPMENT OF 

ADIABATIC SHEAR IN TITANIUM 

M. A. Mogilevskii, T. O. Sanchaa, and Yu. D. Shishkin UDC 539.4 

An increase in deformation normally leads to metal strengthening, which is connected 
with a reduction in the travel of mobile dislocations and an increase in defect density 
with a fixed amount of strain. However, with explosive and high-velocity impact experiments 
under different loading schemes (always with the presence of a free surface) there is a 
change in deformation mechanism from uniformly distributed shear to clearly nonuniform 
shear with formation of "adiabatic shear bands." The intensity of plastic flow in the bands 
is much greater than in the basic material, which leads to additional warm-up of the deformed 
region, its weakening, and as a consequence to its more active deformation in the band. The 
governing role of adiabatic shear in processes of high-velocity punching, formation of 
spalling, high-speed cutting, and stamping, was demonstrated in [1-4]. 

In order to study the nature of adiabatic shear and a credible solution of applied 
problems it is very important to consider the question of critical parameters for high- 
velocity loading leading to a change in deformation mechanism. In the known works on adia- 
batic shear there is no systematic study of this type, which is connected with the complexity 
of the experiments. For this purposethere are a number of procedures: radial disintegra- 
tion of a tube under the action of explosive loading from the direction of the internal 
surface [2] and shock loading in shear [4]. In the present work a simple procedure is 
suggested making it possible to change the loading parameters over wide ranges. 

Shown in Fig. i is the scheme for carrying out the experiment. The plate of test 
material is thrown by a smooth-bore gun or by means of an explosive charge (at velocities 
greater than ii00 m/sec) at a massive substrate. The angle of impact prescribes the amount 
of shear deformation to tan y. With prescribed deformation time the process may be controlled 
by changing the flight velocity of the thrown plate. To a first approximation the impact 
velocity v is proportional to the shear deformation rate. In view of the importance of this 
question, a series of special experiments was carried out for measuring by means of a pulsed 
x-ray emitter the dimensions of the transition zone with different impact velocities. In 
order to avoid welding by explosion, in some of the experiments a thin fluoroplastic or 
polyethylene film was placed on the impact surface, and no marked effect of the film on 
deformation within the volume of the thrown plate was noted. Impact velocity and angle were 
controlled by means of the standard procedure of charged needles. 
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A series of tests was carried out by this scheme on titanium VT-I-0 in the as-supplied 
condition (initial hardness HV = 180 kg/mm 2, grain size 0.02 mm) with a plate 2 ~nnn thick. 
Deformed specimens were cut in the longitudinal direction in an eiectric-arc machine. The 
presence or absence of an adiabatic shear band was checked metallographically in polished 
and etched microsections. Shown in Fig. 2 is the structure of titanium with an adiabatic 
shear band after loading with parameters ~ = 30 ~ , v = I000 m/sec. Broad, comparatively rare 
bands run right through the plate, and the amount of shear of the band reaches 0.3 m~. The 
angle at which the band runs normally corresponds to the calculated impact angle, and with 
large impact angles the picture is distorted by material flow along the impact surface. The 
distance between bands, and hardness in the matrix depends on the amount and rate of deforma- 
tion. Currently a systematic study of these dependences is being carried out. 

Presented in Fig. 3 are the first of the results obtained, i.e., critical impact param- 
eters for development of adiabatic shear in titanium VT-I-0; the curve separates regions 
with presence and absence of an adiabatic shear band (experimental data are marked by plus 
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and minus signs respectively). Thus, a changeover from uniform deformation with high 
velocity shear strain to adiabatic shear is governed by two loading parameters: the 
amount of deformation and impact velocity (deformation rate). 

The existence of this dependence points to the following sequence of deformation 
development. In the first stage there is comparatively uniform development of plastic 
deformation throughout the volume. With an increase in strength there is an increase in 
defect density, and the distance of travel for mobile dislocations decreases. The change- 
over to the adiabatic shear stage occurs at a level of strengthening when intense develop- 
ment of shear along some band at considerable distances with surmounting of existing barriers 
requires less increase in flow stress than follows from extrapolation of the deformation 
of shear. Changes in microhardness indicate that with a prescribed amount of deformation, 
strengthening increases with an increase in impact velocity, then it emerges into satura- 
tion with the start of development of adiabatic shear. 

i. 
2. 

3. 

4. 
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CONSIDERATION OF VISCOSITY DURING SUBSONIC PENETRATION 

OF A SOLID BODY INTO ISOTROPIC BARRIERS 

A. V. Agafonov UDC 539.4 

In solving the problem of the reaction of solids with is,tropic barriers during 
their impact, one of the main questions is determination of the penetration 
resistance of the solid into the barrier. Currently in calculating this resistance 
as a basic phenomenological approach use is made of the hydrodynamic anomaly in 
accordance with which the penetration resistance in the plastic region is assumed 
to be equivalent to the resistance of an ideal liquid. 

In domestic practice during determination of the force of resistance in the case of sub- 
sonic impact there has been widespread use of the so-called two-term equation of the Leningrad 
Physic,technical Institute (LETI) suggested in [i] based on this analogy. According to this 
relationship force of resistance to penetration is written in the form 

where H d is dynamic hardness determined by experiment with impact velocities v ~ I0 m/see; v 
is local penetration velocity; p is barrier material density; k is shape coefficient for the 
body, assumed to equal 1.0 for a body with spherical head; F is body cross-sectional area. 
Similar relationships were derived in [2]. For supersonic impact velocities in working out 
penetration use is made of modifications of the Lavrent'ev-Neuman hydrodynamic theory [2-4]. 

At the same time, as has been established by experiment [5], the majority of ductile 
materials behave beyond the yield point as a ductile liquid. It was shown in [6] on the 
basis of numerical modelling of the penetration process for a deformed body into a barrier 
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that the effect of viscous resistance, without force at the initial stage of penetration, 
will predominate in the final stage of deep penetration. 

In view of this it is desirable to have an idea of the resistance of penetrating 
body taking account of Newtonian viscosity for the barrier material. It may be obtained 
by proceeding from the following basic assumptions. 

i. The penetration process is quasisteady (transition processes are ignored). 

2. Forces of penetration resistance are only distributed at the front surface of the 
body (a cavern forms behind the body). 

3. Distribution of the force of resistance at the front surface of the body is the 
same as with uninterrupted flow around it during movement in a viscous liquid; deviations 
from this distribution in the vicinity of disruption lines of the barrier material with the 
surface of the penetrating body are ignored in view of the smallness of the contribution of 
the force of resistance in this region to the overall amount of resistance. 

Proceeding from these assumptions, we take the structure of the expression for the 
total force of resistance 

n ~  Ri + Ri(~) +.B~(~, (2) 
where R I is the static comonent of the resistance to penetration, depending on the shape of 
the penetrating body and the strength characteristics of the barrier material (hardness); 
R a is the inertial resistance component, depending on the adjoining mass of the body and its 
acceleration; R 3 is the dynamic comonent of resistance with quasistationary (steady) 
movement. 

Furthermore, by analogy with an expression for the force of resistance on introducing 
a solid into soil [4], we assume that the dynamic component of resistance may be presented as 

t!3@ = by + cv~. �9 ( 3 )  

Expression (3) corresponds to retention of the first two terms of a series in the expansion of 
R3(v) into a Taylor series. 

As a rule, values of coefficients b and c in expressions of type (3) are established 
by experiment. Besides this there is a real possibility of determining them on the basis 
of theoretical solutions. With this approach an experiment is only necessary in order to 
check the proposed dependences and it may be carried out in a much reduced volume. 

Subsequently we shall limit ourselves to consideration of a body with a spherical head. 
In this case for the static component of the penetration resistance we write 

R1 --- --Flfra, ( 4 ) 
where H M is Meyer's hardness [7]. 

The inertial component of the resistance may be obtained if we use the Bussinesq 
solution [8, 9]. As is well known, according to the Bussinesq solution the resistance 
of a sphere of radius a moving forward with a prescribed velocity v(t) into a limitless 
region filled with viscous liquid is 

. 2  �9 d ~  ~, +~e,, d,~  (5) R = - -  6ngtav (t) - -  y ~aa9 -d? 6 V " ~  9 a2 3-d~ ] / ~ - ~  ' 
0 

where ~ is dynamic viscosity coefficient; v = ~/p is kinematic viscosity coefficient. 

Since according to the original assumptions the penetration process is considered to be 
quasisteady, and the force of resistance of the front surface is the same as with uninterrupted 
flow around a body, from expression (5) for the inertial comopnent of resistance we have 

(d~) t d v  R 2 ~ ~--F-~-pa-d-[ ,  F = n a  ~. (6) 

An expression also follows from relationship (5) for the linear component of dynamic resis- 
tance. However, since the dynamic component of resistance should be determined with an 
accuracy to squared components, the Bussinesq solution is inadequate. Therefore, in order 
to find the dynamic component of resistance use is made of the Ozeen solution [8]. 
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It is well known [8] that axisymmetric flow of a stream of viscous liquid around a 
body is described, proceeding from the generalized Stokes' equations, by the potential of 
velocities ~ and functions • which satisfy the equations 

v aZ 

a' t a where A = #r--~+-F~+--az 2 is Laplace operator; r is radius in a cylindrical, coordinate sys- 

tem; x is coordinate along the running stream; v is stream velocity. At the body surface 
the "attachment" condition should be fulfilled v n = v s = 0 (v n and v s are normal and tangential 
components of velocity), and at infinity the condition for damping of perturbations intro- 
duced by the body into the stream v x = v, v r = 0 should be fulfilled. 

In considering flow of a stream around a sphere it is natural to change over to 

dimensionless spherical coordinates 

x = Boa cos 0~ r = Boa sin 0 

( a  i s  s p h e r e  r a d i u s ) .  

Keeping to the details of obtaining solutions which are given in detail in [8], it is 
noted that with an accuracy up to Re 2 (Re = va/n is Reynolds number) the functions sought 

and X may be presented (with R c % i) in the form 

'~ A P" (cos O) ( 7 ) 
n~O --C 

%~-'--v+Bo|' ~-~ IPe(e~ 0) Re [Po(c0s0)-- P* ( c ~  . --"/k 'T] c yP~  (cos0)-- 2P; (Cos0) + --E Po ( c o s 0 ) ,  + 

, ]} tel  2 p2(eosO) + Tpo(cos0 ) + B2P~(e~ ' + Bi P, (r + TLT ~, + "" "' 

where Pn(...) are Legendre polynomials [i0]; P0(cos 8) = i; Pi(cos 8) = cos 8; P2(cos 8) = 
1/213 cos29 - i]. Constants A h and B n are determined from the boundary conditions (with 

R c = I) 

�9 t az t atp 
~'Rc = - -  X eoso + ~a-~.~ + T~R'~ = 0; ( 9 )  

t OX t Otp 
v o = x s i n O + . ~ + - ~  = 0 ,  (io) 

Boundary conditions at infinity are satisfied automatically. 

After substituting (7) and (8) in (9) and (I0), and solving the set of equations for 

constants A n and B n, we obtain the following expressions: 

L o 3 

t v t 3 v 

A~ = -[ " - - T - - -  a ~, "T va, Bo = T 1 -- -~ Re" 
i --"g- Re 

Bj: = 3 v Re A2 J B i v Be 
- -  3 '.,~ T + ~ - ~  2 "~ t . 3 R e  4 t -- -~- Re 

(il) 

Constants A 2 and B 2 are only determined in their linear combination, although as will be seen 
subsequently, this situation does not affect expressions for the force of resistance with the 

degree of accuracy adopted. 

As shown in [8], the principal vector for the force of resistance with flow of a ductile 
incompressible liquid around a body with a spherical head may be (taking account of the sign 
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of velocity at infinity) presented in the form 

. t acpl 

S 

Here p~ = 1/2 pv 2 is retardation pressure at infinity; S is the wetted surface of a stream- 

lined body. 

In the case of uninterrupted flow around a sphere, taking account of the idea of potential 
in the form of (7) and orthogonality conditions for the Legendre polynomials 

S p'~ (cos 0) P~ (cos 0) sin 0d0 = 0 (m ~= n) 
0 

and for the force of resistance from (12) we have the equation 

S[ + ~ 
R 2~a ~ -- pv2c~ + T ~ . (13 )  

= 4;~a~pvA--~~ a = --  6n~av t + Re = - :  ~a ~ 6 ~-s + -~ pv ~ 

which i s  an Ozeen e q u a t i o n .  

When f low o n l y  p r o c e e d s  o v e r  t h e  f r o n t  s u r f a c e  (up t o  t h e  m i d d l e c r o s s  s e c t i o n )  t h e  f o r c e  
o f  r e s i s t a n c e  w i t h  t h e  d e g r e e  o f  a p p r o x i m a t i o n  a d o p t e d  

n/2 

R. (v) = 2~a 2 - -  --f Or" cos 0 .T 
= (14) 

=na~  - - T O Y  + 2 - 2 ( A o  + Ai) = - - ~ a  2 3~-!~ + .g -pv2  . 

We now d w e l l  on t h e  l i m i t s  o f  a p p l i c a b i l i t y  o f  t h e  s u g g e s t e d  r e l a t i o n s h i p  f o r  t h e  
dynamic comopnent  o f  p e n e t r a t i o n  r e s i s t a n c e .  As i s  w e l l  known [ 9 ] ,  t e s t s  c a r r i e d  ou t  by 
G o l ' d s h t e i n  made i t  p o s s i b l e  t o  e s t a b l i s h  a s a t i s f a c t o r y  ('~15%) c o n f o r m i t y  o f  c a l c u l a t e d  and 
e x p e r i m e n t a l  d a t a  w i t h  f low a round  a s p h e r e  up t o  Re = 4. With g r e a t e r  Re d e v i a t i o n  o f  
c a l c u l a t e d  d a t a  f rom e x p e r i m e n t a l  r e s u l t s  i n c r e a s e s  c o n t i n u o u s l y .  These  d e v i a t i o n s  a r e  
e x p l a i n e d  by t h e  f a c t  t h a t  w i t h  q u i t e  h i g h  Re t h e r e  i s  c o l l a p s e  o f  v o r t i c e s  f rom t h e  r e a r  
s u r f a c e  o f  t h e  s p h e r e  l e a d i n g  t o  phenomena o f  t h e  a u t o v i b r a t i o n  t y p e  [ 9 ] ,  and t he  f low p i c t u r e  
does  n o t  c o r r e s p o n d  to  t h a t  a d o p t e d  in  t h e  Ozeen s o l u t i o n .  

With p e n e t r a t i o n  o f  a so.l.id i n t o  a b a r r i e r  whose m a t e r i a l  i s  c o n s i d e r e d  as a v i s c o u s  
l i .quxd,  f low a round  t h e  r e a r  s u r f a c e  does  n o t  o c c u r  in  a c c o r d a n c e  w i t h  t h e  second  a s s u m p t i o n ,  
and consequently vortices do not form at the rear surface. Therefore, it is possible with a 
considerable degree of certainty to confirm that use of this approach is permissible for much 
greater Re than with uninterrupted flow around a sphere. 

Taking account of this last observation, from (2), (4), (6), and (14) for the total 
force of penetration resistance for a body with a spherical head it is possible to write 

[ ~v 5 ~ ~ dv 1 
R = : n a  ~ H M + 3 - ~ - + - T p u ' + - ~ - a P ~ T .  (15)  

In deriving relationship (15) use was made of an assumption about complete engagement of 
the barrier material with surface of the penetrating body. In fact, it is possible that 
during penetration there will be partial sliding of the barrier material over the body 
surface. For this case it is possible to suggest the following modification of expression 
(15): 

[HM+ ( I ) ~ , i a . I T  0u +Tap~] ~ + 

where ~ is a coefficient taking account of engagement ($ = I is complete engagement, $ = 0 is 
absence of it) determined by experimentation. 

By comparing (15) and (i) it can be seen that main difference of the suggested relation- 
ship from the Vitman-Stepanov equation is the fact that with low penetration velocities the 
resistance is proportional to the first power of velocity and the square of it (the effect of 

435 



a term connected with weight is small in the majority of cases). With high penetration 
velocities, when the term proportional to the square of the velocity is important, both 
relationships approach each other. 

As an example of using the suggested relationship we consider calculation of the depth 
of penetration at the stage of deep penetration. Let a solid with a spherical head of radius 
a and mass m after penetration to depth x0 > a at instant t o = 0 move in the barrier material 
with velocity v 0. 

Assuming for simplicity that B = i, and ignoring in accordance with the first assumption 
the nonstationary component of acceleration, in a coordinate system connected with the barrier 
we have 

d/dt = OlOt + v~l~x ,~ vo~l@x~ 

(m+~ 
By introducing dimensionless variables Re = va/v = vap/p, ~ = x/a and dimensionless parameter 
d o = HMa2P/p 2, in order to calculate the depth of penetration we obtain the equation 

d~ = .  k~ + l Re d (Re) 

3 d o + 3 R e +  5 R e  $ . Y (16) 

Here km = m/[(i/3)~pa 3] is mass coefficient of the penetrating body. 

By integrating (16) for Re from Re 0 = voap/D to 0 and for ~ from $0 = x0/a to $, and 
using tabulated ratios for the retardation path in the case of d o < 18/5, we find that 

(~ Re. + 
A 

With do > 18/5 the expression for the retardation path is determined in a similar way. 
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